SYNTHESIS AND PROPERTIES OF HYDROGENATED 2-ALKYLTHIO-5-OXO-3-CYANOINDENO

[1, 2-b]-PYRIDINES

A. A. Krauze, É. É. Liepin'sh, and G. Ya. Dubur

UDC 547.825'572.3:543.422.25

Condensation of 2-arylidene-1, 3-indandiones with cyanothioacetamide in the presence of piperidine, followed by treatment with alkyl halides, has given partially hydrogenated 2-alkylthio-5-oxoindeno [1,2-b]-pyridines, the oxidation, interconversion, and Thorpe cyclization of which to give a novel heterocyclic system, indeno [1', 2':6,5]pyrido [2,3-b]thiophene, have been examined.

Continuing work on the synthesis and study of 2-alkylthio-1, 4-dihydropyridines [1, 2], we have now obtained some novel hydrogenated 2-alkylthio-5-oxoindeno [1,2-b]pyridines, and examined their interconversion and Thorpe cyclization to the novel indeno [1',2':6,5]pyrido-[2,3-b]thiophene system.

Condensation of 2-arylidene-1, 3-indandiones with cyanothioacetamide in the presence of piperidine, followed by treatment with alkyl halides has given the colorless 9b-hydroxy-2-alkylthio-5-oxo-4-aryl-3-cyano-1, 4, 4a, 9b-tetrahydroindeno[1,2-b] pyridines (I), which are unstable compounds with a tendency to lose a molecule of water. This takes place to some extent during this reaction, giving mixtures of (I) and the 5-oxo-2-alkylthio-1, 4-dihydro-indeno[1,2-b] pyridines (II). The compounds (II) have been obtained preparatively in high yields by boiling the 9b-hydroxy-compounds (I) in acidified ethanol.

The tetrahydroindenopyridines (I) are also formed, although in slightly lower yields, by the joint condensation of 1, 3-indandione, the aromatic aldehyde, and cyanothioacetamide in the presence of piperidine as condensing agent, followed by treatment with an alkyl halide.

2-Alkylthio-5-oxo-3-cyano-1, 4-dihydroindeno [1, 2-b] pyridines (II) which contain a reactive methylene group in the 2-alkylthio substituent, readily undergo closure of the thienyl ring in basic media to give the novel heterocyclic system 3-amino-5-oxo-4-aryl-4, 10-dihydroindeno [1', 2':6, 5] thiophene (III).

The 2-carbamoylmethylthio-5-oxo-3-cyano-1, 4-dihydroindeno [1, 2-b] pyridine (IId) is oxidized by sodium nitrite in acetic acid to the corresponding 2-carbamoylmethylthio-5-oxo-4-(p-nitrophenyl)-3-cyanoindeno [1, 2-b] pyridine (IV), which, like (II), readily cyclizes on treatment with sodium ethoxide to give high yields of 3-amino-5-oxo-4-(p-nitrophenyl)-2carbamoylindeno-[1',2':6,5]pyrido[2,3-b]thiophene (V).

The structures of the products were confirmed by spectroscopy. The IR spectra (Table 2) of (I), (II), and (IV) showed characteristic absorption for v_{CN} at 2182-2204 cm⁻¹ and 2224 cm⁻¹ respectively, and for v_{NH} , v_{NH} , and v_{OH} at 3160-3476 cm⁻¹. The absorption v_{CO} for the 5-oxo-group in (II) and (III) was slightly less than that in the tetrahydroindenopyridines (I) and the indenopyridines (IV), which is characteristic of β -aminovinyl ketones. The IR spectra of (III) and (V) showed no v_{CN} absorption, but new v_{NH} , absorption appeared.

The UV spectra (Table 2) of the tetrahydroindenopyridines (I) showed long wavelength absorption at 280-288 nm, the dihydroindenopyridines (II) at 466-474 nm, and the dihydroindenopyridothiophenes (III) at 492-494 nm, i.e., as the extent of conjugation in the hydrogenated compounds increased, the long wavelength maximum was shifted bathochromically. The indenopyridine (IV) and the indenopyridothiophene (V) showed a long wavelength absorption maximum at 367 and 405 nm respectively, i.e., the absorption was shifted hypsochromically as compared with their dihydro-analogs, in agreement with earlier reports [3, 4].

Institute of Organic Synthesis, Academy of Sciences of the Latvian SSR, Riga 226006. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 115-119, January, 1990. Original article submitted April 6, 1988.

TABLE	1.	Properties	of	Compounds	(T-V)
TUDD D	т •	ropercies	OT.	oompounds	(1 1)

Com-	mp.°C	Empirical	Yield, %*		
pound		formula	A	В	
Ia Ib Id If Ig IIa IIc IIc IIf IIf IIf IIh IIIh IIIh V V	$\begin{array}{c} > 160^{**} \\ > 150^{**} \\ 166 \ldots 168^{**} \\ > 130^{**} \\ > 160^{**} \\ 176 \ldots 178 \\ 227 \ldots 229 \\ 318 \ldots 320 \\ 212 \ldots 214 \\ 211 \ldots 213 \\ 260 \ldots 262 \\ 300 \ldots 302 \\ 232 \ldots 234 \\ 324 \ldots 326 \\ 268 \ldots 270 \\ 252 \ldots 254 \\ 332 \ldots 334 \end{array}$	$\begin{array}{c} C_{22}H_{16}N_2O_2S\\ C_{20}H_{15}N_3O_1S\\ C_{21}H_{16}N_4O_5S\\ C_{21}H_{16}N_4O_5S\\ C_{20}H_{15}CIN_2O_2S\\ C_{20}H_{15}N_3O_2S\\ C_{20}H_{13}N_3O_2S\\ C_{20}H_{13}N_3O_3S\\ C_{21}H_{14}N_4O_4S\\ C_{20}H_{13}N_3O_3S\\ C_{21}H_{14}N_4O_4S\\ C_{20}H_{13}CIN_2OS\\ C_{21}H_{14}N_4O_4S\\ C_{20}H_{13}CIN_2OS\\ C_{21}H_{14}N_4O_4S\\ C_{21}H_{14}N_4O_4S\\ C_{21}H_{14}N_4O_4S\\ C_{21}H_{14}N_4O_4S\\ C_{21}H_{14}CIN_3O_2S\\ C_{21}H_{14}CIN_3O_2S\\ C_{21}H_{14}N_4O_4S\\ C_{21}H_{12}N_4O_4S\\ C_{21}H_{12}N_4O_4S\\ \end{array}$	76 88 73 70 54 51 70 72 68 44	67 35 48 95 90 86 72	

*The yield of (II) was calculated on the starting cyanothioacetamide. **With decomposition.

TABLE Z. IN and UV Spectra of (I	ectra or (1-V)	- 2	UV	ana	TK	2.	TABLE
----------------------------------	----------------	-----	----	-----	----	----	-------

Com-	11	R spect	trum, v, cm ⁻¹	UV spectrum, λ , nm		
pound	со	CN	NH. NH2, OH			
Ia Ib Id If Ig IIa IIb IIc IId IIf IIf IIf IIIa V V	$\begin{array}{c} 1714\\ 1712\\ 1677, 1720\\ 1671, 1725\\ 1712\\ 1674\\ 1685, 1698\\ 1673\\ 1674, 1688\\ 1690\\ 1667, 1693\\ 1682\\ 1675, 1688\\ 1644, 1667\\ 1628, 1673\\ 1628, 1673\\ 1689, 1720\\ 1655, 1717\\ \end{array}$	2182 2184 2194 2194 2204 2200 2200 2196 2196 2196 2196 2190 	3258, 3305, 3350 s* 3322, 3370 3168, 3288, 3350, 3448 3186, 3344 3306, 3366 3206 3160, 3300, 3350 3276 3200, 3354, 3462 3196 3180, 3374 3270 3180, 3356, 3476 3192, 3312, 3442 3144, 3374, 3472, 3488 3160, 3440, 3475 3166, 3270, 3322, 3460, 3482	246, 288 249, 282 247, 282 248, 280 245, 288 254, 262, 282 s, 348, 474 253, 264, 352, 474 256, 262, 282 s, 338, 470 265, 276 s, 342, 472 256, 264, 281 s., 346, 466 255, 264, 345, 468 254, 263, 350, 472 254, 264, 348, 474 239, 267, 307, 355, 492 243, 266, 312, 365, 494 243, 266, 312, 365, 494 268, 292 sh., 316, 367 264, 306, 335, 405 sh.		

*s) strong.

TABLE 3. PMR Spectral Parameters for

		(Chemic	al shi	fts, 🤇	δ , ppm		CC, .	J, Hz
Com- pound	NH (s)	arom. protons (m)	6-0H (s)	4-H (d)	4a-H (d)	SCH_2R^1 (d and d)	SCH3 (s)	H4-H2	S-CH₂
Ia Ib* Ic Id* Ie If* Ig Ib*	8,03 9,22 8,06 9,38 8,10 9,37 8,07 9,24	$\begin{array}{c} 7,9 \ldots 7.2 \\ 7,9 \ldots 7.3 \\ 8.3 \ldots 7.6 \\ 8.4 \ldots 7.6 \\ 8.4 \ldots 7.5 \\ 7.9 \ldots 7.4 \\ 7.9 \ldots 7.3 \end{array}$	6.82 6,98 6,92 7,10 6,98 7,18 6,85 6,96	4,06 4,10 4,23 4,29 4,26 4,28 4,06 4,08	3,36 3,36 3,47 3,47 3,50 3,42 3,37 3,34	3,54 and 3,28 3,58 and 3,30 3,54 and 3,40 3,54 and 3,28	$2,28 \\ -2,22 \\ -2,30 \\ -2,2 \\ 2,2$	2.2 2.2 2.4 2.2 2.2 2.2 2.2 2.2 2.2 2.4 2.2 2.4 2.2	$ \begin{array}{c}$

*The signals for the $CONH_2$ protons lie beneath those for the aromatic protons.

In the PMR spectra (Table 3), the signals most characteristic of the compounds (I) were those for the 4-H and 4a-H protons, the chemical shifts of which were 4.29-4.06 and 3.47-3.36 ppm, with ${}^{3}J_{H_{4},H_{5}}$ = 2.2-2.4 Hz, which according to Kuthan et al. [5] indicates that the 4-H and 4a-H protons are disposed trans-diequatorially, so that the 4-aryl substituent is oriented trans-axially.

In the PMR spectra of (II) and (III), the most important signals confirming the dihydro structure are those for the 4-H and N-H protons. In the case of (III), the signals for the 4-H protons are seen at 5.20-5.08 ppm, i.e. at lower field than those for (II) (4.92-4.61) as a result of an increase in the overall conjugation of the molecule in the dihydroindenopyridothiophenes (III).

I. II a, b R=H,c,d $R=p-NO_2,e,f$ $R=m-NO_2,g,h$ R=p-Cl;a,c,e,g $R^1=H,b,d,e,f,h$ $R^1=CONH_2;$ III a $R=NO_2, b$ R=Cl

The signals for the SCH₂ protons (when $R^1 = CONH_2$) in (I) and (II) are seen as an AB quartet with ${}^2J_{\rm SCH_2} = 14.4-15.0$ Hz, showing that the CH₂ protons are nonequivalent as a result of the presence in the molecule of an asymmetric center at C₍₄₎.

Noteworthy is the shift to lower field of the NH protons in (I) and (IIb, d, f, h) ($\mathbb{R}^1 = CONH_2$) as compared with (I) and (IIa, c, e, g) ($\mathbb{R}^1 = H$) (Tables 3 and 4), owing to the presence of intramolecular hydrogen bonding between $N_{(1)}$ -H and the amide group. This was confirmed by obtaining the IR spectra of these compounds in solution in DMSO, when v_{CO} remained the same when the saturated solution was repeatedly diluted.

EXPERIMENTAL

IR spectra were obtained on a Perkin-Elmer 580 B (in Vaseline grease), UV spectra on a Specord UV-VIS (in ethanol), and PMR spectra on a WH 90/DS instrument (90 MHz) in DMSO-D₆, internal standard TMS. The progress of the reactions and the purity of the products were followed by TLC on Silufol UV-254 plates, eluent chloroform-hexane-acetone, 2:1:1.

The principal characteristics of the products are given in Tables 1-4.

<u>9b-Hydroxy-2-alkylthio-5-oxo-4-aryl-3-cyano-1,4,4a,9b-tetrahydroindeno[1,2-b]-pyridines(I).</u> A) A mixture of 10 mmole of the 2-arylideneindan-1,3-dione and 10 mmole of cyanothioacetamide

TABLE 4. PMR Spectral Parameters for (II-V) in DMSO-D₆

		Chemical shifts, δ , ppm								
pound	NH(s)	arom. protons	CONH ₂ (s and s)	4-H (s)	$S-CH_2R^1$ (d and d)	SCH₃ (s)	3•NH2 (s)	SCH₂		
IIa IIb IIc IId IIe IIf IIf IIh IIId	10.82 11.92 10.92 12.04 10.95 12,10 10.85 11.98 11.47 11.42	$\begin{array}{c} 7,8\ldots,7,2\\ 7,6\ldots,7,3\\ 8,3\ldots,7,3\\ 8,3\ldots,7,3\\ 8,2\ldots,7,2\\ 8,2\ldots,7,2\\ 8,2\ldots,7,2\\ 7,8\ldots,7,2\\ 7,8\ldots,7,2\\ 7,5\ldots,7,2\\ 8,2\ldots,7,2\\ 7,5\ldots,7,2\\ 8,2\ldots,7,2\\ 7,5\ldots,7,2\\ 7,5\ldots,7,2\\ 8,2\ldots,7,2\\ 7,5\ldots,7,2\\ 8,2\ldots,7,2\\ 7,5\ldots,7,2\\ 7,5\ldots,7,2$	8,09 and 7,79 8,08 and 7,78 beneath arom. protons 8,06 and 7,76 6,80	4,61 4,62 4,88 4,90 4,92 4,95 4,67 4,68 5,20 5,08	3,94 and 3,84 B,94 and 3,84 3,91 and 3,83 	2,62 2,66 2,65 - 2,63 - 2,63 -		15,0 14,4 15,0 15,0		
IV V		8,5 7,6 8,5 7,5	7,66 and 7,28 7,32		4.18	_	5,70			

in 20-40 ml of abs. ethanol and 1.5 ml (15 mmole) of piperidine was stirred for 20-30 min at ambient temperature, then 2.5 ml (40 mmole) of methyl iodide was added, and the mixture heated on the water bath to 40-50°C for 2-3 min. After 3 h at ambient temperature, the precipitated solid was filtered off, and washed with ethanol and water to give (Ia), (Ic), and (Ig) in 70-88% yield. The product was then recrystallized from ethanol or a mixture of ethanol and DMF (3:1).

Similarly, from a mixture of 10 mmole of the 2-arylideneindan-1, 3-dione and cyanothioacetamide in 30 ml of abs. ethanol and 1.1 ml (11 mmole) of piperidine, followed by addition of 1.87 g (11 mmole) of iodiacetamide, there was obtained (Id), yield 73%, mp 166-168°C with decomp. (from ethanol-DMF,3:1).

B. A mixture of 1.46 g (10 mmole) of 1, 3-indandione and 1.51 g (10 mmole) of m-nitrobenzaldehyde in 50 ml of ethanol and 0.5 ml of piperidine was stirred for 1-2 min at ambient temperature, 1.0 g (10 mmole) of cyanothioacetamide and 0.5 ml (5 mmole) of piperidine added, stirred for a further 30 min, and 2.04 g (12 mmole) of iodoacetamide added. The mixture was heated on a water bath to 50-60°C for 2-3 min, kept at ambient temperature for one hour, and the solid filtered off and washed with ethanol and water to give 2.92 g (67%) of (If), mp > 130°C with decomp. (from ethanol-DMF, 3:1).

<u>2-Alkylthio-5-oxo-4-aryl-3-cyano-1, 4-dihydroindeno [1, 2-b]pyridines (II).</u> Ten mmole of the tetrahydroindenopyridine (I) or crude material as a mixture of (I) and (II) in 100 ml of 0.2 N HCl in ethanol was boiled for 3-5 min on the water bath, kept for one hour at ambient temperature, and the solid filtered off and washed with ethanol and water to give (II), which was recrystallized from a mixture of ethanol and DMF (3:1)-(1:1).

<u>3-Amino-5-oxo-4-aryl-2-carbamoyl-4, 10-dihydroindeno [1',2':6,5] pyrido[2, 3-b] thio-phenes (III)</u>. A mixture of 5 mmole of the 1,4-dihydroindenopyridine (II) and 1.7 ml of 3 N NaOH in 50-60 ml of ethanol was boiled on the water bath for 3-5 min, kept for 30 min at ambient temperature, and neutralized with 5 ml of 1 N HCl in ethanol. The solid was filtered off, and washed with ethanol and water to give (III) in 90-95% yield, recrystallized from ethanol-DMF (1:1).

<u>2-Carbamoylmethylthio-5-oxo-4-(p-nitrophenyl)-3-cyanoindeno[1,2-b]-pyridine (IV)</u>. A mixture of 0.84 g (2 mmole) of the 1,4-dihydroindenopyridine (IId) and 0.28 g (4 mmole) of sodium nitrite in 10 ml of glacial acetic acid was boiled on the water bath until oxides of nitrogen ceased to be evolved. The mixture was then kept for one hour at ambient temperature, 10 ml of ethanol added, and the solid filtered off and washed with 10 ml of water to give 0.72 g (86%) of (IV), mp 252-254°C (from ethanol-DMF, 1:1).

<u>3-Amino-5-oxo-4-(p-nitrophenyl)-2-carbamoylindeno [1', 2':6, 5] pyrido[2, 3-b]-thiophene</u> (V). A mixture of 0.42 g (1 mmole) of the indenopyridine (IV) and 1 ml of 1 N sodium ethoxide in 10 ml of ethanol was heated for 2-3 min on the water bath, kept for 30 min at ambient temperature, and the solid filtered off and washed with ethanol and water to give 0.3 g (72%) of (V), mp 332-334°C (from ethanol-DMF, 1:1).

LITERATURE CITED

- 1. A. A. Krauze, É. É. Liepin'sh, Yu. É. Pechler, Z. A. Kalme, and G. Ya. Dubur, Khim. Geterotsikl. Soedin., No. 1, 75 (1987).
- 2. A. A. Krauze, É. É. Liepin'sh, Yu. É. Pechler, and G. Ya. Dubur, ibid, No. 1, 124 (1987).
- 3. G. Ya. Dubur and G. Ya. Vanag, Izv. Akad. Nauk Latv. SSR, Ser. Khim., No. 2, 287 (1962).
- 4. B. A. Vigante, Ya. Ya. Ozols, and G. Ya. Dubur, Izv. Akad. Nauk Latv. SSR, Ser. Khim, No. 6, 707 (1980).
- 5. J. Kuthan, P. Neswadba, Z. Donnerova, and P. Trska, Coll. Czech. Chem.Commun., <u>42</u>, 2152 (1977).

STRUCTURE OF PRODUCTS OF ADDITION OF THIOSEMICARBAZIDES AND THIOSEMICARBAZONES TO ACETYLENEDICARBOXYLIC ACID AND ITS DIMETHYL ESTER

V. Ya. Kauss, É. É. Liepin'sh,

I. Ya. Kalvin'sh, and É. Lukevits

UDC 547.497.1'462.8'789.1

Addition of 1, 1-di-, 1, 4-di-, and 1, 1, 4-trisubstituted thiosemicarbazides to acetylenedicarboxylic acid and its dimethyl ester affords 2-hydrazono-4-oxo-1, 3-thiazolidine- $\Delta^{5,\alpha}$ -acetic acids, while 4-monosubstituted thiosemicarbazides give 2-imino-3-amino-1, 3-thiazolidin-4-ones.

Addition of thiosemicarbazides to acetylenedicarboxylic acids affords a variety of heterocyclic systems, but information on their structure is contradictory.

The product of the reaction of thiosemicarbazide with dimethyl acetylene-dicarboxylate (DMAC) has been assigned [1] the 1, 3-thiazoline structure (I).

The products of the reactions of 4-monosubstituted thiosemicarbazides with DMAC have been assigned [2] the 1,3-thiazine structure (II), although according to [3] these compounds are the 3-amino-1, 3-thiazolidin-4-ones (III). It was reported in [4] that DMAC reacts with 6-substituted-3-thioxo-5-oxo-1, 2, 4-triazines (IV) (cyclic analogs of thiosemicarbazides) to give the 1, 3-thiazolidin-4-ones (V) rather than the 1, 3-thiazines [5]. The structure of (V) was proved by ¹³C NMR spectroscopy.

II. III a $R = CH_3$, b $R = CH_2CH = CH_2$, c $R = C_6H_5$; IV, V a R = H, b $R = CH_3$, c $R = C_6H_5$, d $R = C_6H_5CH_2$

It has previously been shown by X-ray diffraction examination of the thiazolidines obtained by reaction of thioureas with DMAC [6] that donor-acceptor interactions are present

Institute of Organic Synthesis, Academy of Sciences of the Latvian SSR, Riga 226006. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 120-125, January, 1990. Original article submitted October 25, 1988.